Hamiltonian for the Zeros of the Riemann Zeta Function.
نویسندگان
چکیده
A Hamiltonian operator H[over ^] is constructed with the property that if the eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function. The classical limit of H[over ^] is 2xp, which is consistent with the Berry-Keating conjecture. While H[over ^] is not Hermitian in the conventional sense, iH[over ^] is PT symmetric with a broken PT symmetry, thus allowing for the possibility that all eigenvalues of H[over ^] are real. A heuristic analysis is presented for the construction of the metric operator to define an inner-product space, on which the Hamiltonian is Hermitian. If the analysis presented here can be made rigorous to show that H[over ^] is manifestly self-adjoint, then this implies that the Riemann hypothesis holds true.
منابع مشابه
A Schrödinger Equation for Solving the Riemann Hypothesis
The Hamiltonian of a quantum mechanical system has an affiliated spectrum. If this spectrum is the sequence of prime numbers, a connection between quantum mechanics and the nontrivial zeros of the Riemann zeta function can be made. In this case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. Such quantum Riemann z...
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملA pseudo-unitary ensemble of random matrices, PT-symmetry and the Riemann Hypothesis
An ensemble of 2 × 2 pseudo-Hermitian random matrices is constructed that possesses real eigenvalues with level-spacing distribution exactly as for the Gaussian unitary ensemble found by Wigner. By a re-interpretation of Connes’ spectral interpretation of the zeros of Riemann zeta function, we propose to enlarge the scope of search of the Hamiltonian connected with the celebrated Riemann Hypoth...
متن کاملLandau-siegel Zeros and Zeros of the Derivative of the Riemann Zeta Function
We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.
متن کاملFirst Zeros of the Riemann Zeta Function, and Zeros Computation at Very Large Height
In this paper, we present an optimization of Odlyzko and Schönhage algorithm that computes efficiently Zeta function at large height on the critical line, together with computation of zeros of the Riemann Zeta function thanks to an implementation of this technique. The first family of computations consists in the verification of the Riemann Hypothesis on all the first 10 non trivial zeros. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 118 13 شماره
صفحات -
تاریخ انتشار 2017